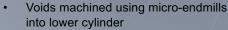

Identification of Voids & Inclusions in Z Targets* M. Rich¹, K. Tomlinson¹, R. Holf¹, R. Paguio¹

OVERVIEW

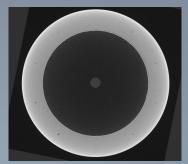
- · Voids and inclusions in Be targets for the Z machine can cause instabilities during implosion.
- · All target bodies are scanned using CT before assembly to identify and characterize voids and inclusions.
- · Theoretically the smallest detectable defect must be covered by a 2v*2v*2v matrix (v=voxel size)
- Creating parts with known defect sizes/locations will allow validation of CT measurements.
- The purpose of this is to validate the detection abilities of the CT machine and current methods being used.

INCLUSION TARGET



- · Stainless steel microspheres pressed in between two aluminum cylinders
- · Imitate iron inclusions found in Be targets
- · Microspheres measured using measurement microscope before assembly for comparison
- All four sizes of inclusions were able to be seen in CT scan
- · CT scan had 17.3 um voxel size
- Smallest size (21um) was not large enough to be

confidently measured



VOID TARGET

- Epoxied to upper cylinder to simulate sealed voids found inside Be targets
- Voids measured using measurement microscope for comparison.
- Smallest voids were not large enough to be measured
- All of the void sizes could be seen in CT reconstruction

RESULTS

Actual Inclusion Size (µm)	CT Measured Size(µm)	% Error
21	-	-
38	46	21.1%
80	85	6.3%
178	173	2.8%

Measurements were taken using the software (NSI) of the CT machine. Measurements taken using Volume Graphics defect detection tool do not match the actual or NSI measurements.

NEXT STEPS

Actual Void Diameter (µm)	CT Measured Size (µm)	% Error
51	-	-
73	90	23.3%
101	96	5.0%
138	127	8.0%
174	165	5.2%
51	-	-
71	81	14.1%
109	88	19.3%
129	125	3.1%
172	162	5.8%

- Create identical parts out of Be to more accurately assess detectability of different Z values
- Identify the proper Volume Graphics settings needed to match measurements to **NSI** measurements
- Create array of sizes to be used as Reference Quality Indicators
- Further refinement of scan parameters to minimize X-Ray artifacts